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Abstract
The Bethe–Salpeter equation for two-dimensional excitons in the presence
of a strong external constant magnetic field is solved in the lowest-Landau-
level approximation. It is shown that the constant magnetic field leads to the
generation of an energy gap in the exciton spectrum.

Recently, the phenomenon of magnetic catalysis, namely the generation of an energy gap in
the system of fermions in an external constant magnetic field for any arbitrary weak attractive
interaction between fermions, has been considered in QED (Gusynin et al 1994, 1995). It is the
purpose of this work to analyse the same phenomenon from the exciton point of view. We will
consider two-dimensional (2D) excitons in direct-gap semiconductors with non-degenerate
and isotropic bands in the presence of a constant magnetic field B = Bz = (0, 0, B) along
the z-direction. The dispersion laws for the electrons and holes are Ec(k) = Eg + k2/2mc

and Ev(k) = k2/2mv, respectively. Here mc and mv are the corresponding effective masses
and Eg is the semiconductor band gap (we set h̄ = 1 throughout this letter). The energy
gap generation for a system of excitons can be analysed by considering the homogeneous
Bethe–Salpeter (BS) equation (Bethe and Salpeter 1951, Gell-Mann and Low 1951) for the
BS wavefunction
(rc, t1; rv, t2). In the case of electron–hole bound states in semiconductors
with non-degenerate and isotropic bands, the BS equation has the form(

i
∂

∂t1
− Eg − 1

2mc

[
−i ∇rc +

e

c
A(rc)

]2)(
i
∂

∂t2
− 1

2mv

[
−i ∇rv − e

c
A(rv)

]2)

× 
(rc, t1; rv, t2) = −iIC(rc, t1; rv, t2)
(rc, t1; rv, t2) (1a)

where the irreducible kernel IC represents the Coulomb attraction between electrons and holes
that constitute the excitons:

IC(rc, t1; rv, t2) = 2πe2
∫

d2q

(2π)2

∫ +∞

−∞

dω

2π

1

q
ε−1(q, ω) exp{i[q · (rc − rv)− ω(t1 − t2)]}.

(1b)
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Here ε−1(q, ω) is the inverse dielectric constant, rc and rv are the 2D electron and hole
radius vectors and A(r) = B × r/2 is the vector potential of the constant magnetic field.
We note that the above-mentioned effect does not exist if we obtain the magnetoexciton
spectrum E(Q,B) by solving the corresponding Schrödinger equation in the lowest-Landau-
level (LLL) approximation. In this approximation one can ignore transitions between Landau
levels and consider only the states on the lowest Landau level. In the LLL approximation
the magnetoexciton spectrum for small wavevectors Q is found to be parabolic: E(Q,B) =
Eg +�/2−Eb +Q2/2MB (Lozovik and Yudson 1975, 1976, Lerner and Lozovik 1980). Here
� = eB/µc is the exciton cyclotron energy, defined in terms of the exciton reduced mass
µ = mcmv/(mc + mv), Eb = √

π/2(e2/ε0R) is the magnetoexciton binding energy, ε0 is the
optical dielectric constant, R = (c/eB)1/2 is the magnetic length andMB = 2/(EbR

2), acting
as the effective exciton mass.

By using the relative, r = rc − rv, and centre-of-mass, R = (mcrc + mvrv)/(mc + mv),
coordinates, the exciton wavefunction 
(r1, t1; r2, t2) can be written in the form


(rc, t1; rv, t2) = exp

{
i

[
Q · R − e

c
r · A(R)− E(αct1 + αvt2)

]}
�Q(r, t1 − t2) (2)

where E ≡ E(Q,B), αc,v = mc,v/M and M = mc + mv is the exciton mass. It is more
convenient to write the BS equation (1a) in the momentum space, taking into account the
one-particle band structure of the semiconductor. For this reason we introduce the Fourier
transform of the function �Q(r, t) of the relative motion:

�Q(r, t) =
∫

d2q

(2π)2

∫ +∞

−∞

dω

2π
exp{i[q · r − ωt]}�Q(q, ω). (3)

After some tedious but straightforward calculations, one can obtain the following BS
equation for the function �Q(q, ω):

[�−�c(p,Q)][�−�v(p,Q)]�Q(p, �)

= −i
∫

d2q

(2π)2

∫ +∞

−∞

dω

2π
I (p, q,Q;�,ω)�Q(q, ω) (4a)

where the kernel of the BS equation can be written as

I (p, q,Q;�,ω) = IC(|q − p|;�− ω) + IB(p, q,Q;�,ω). (4b)

The Coulomb part of the kernel IC is given by the well-known expression

IC(p;ω) = 2πe2

|p| ε−1(p, ω). (4c)

The magnetic part of the kernel IB is due to the interaction of the electron and hole with
the magnetic field:

IB(p, q,Q;�,ω) = −2π iδ(ω −�){[�−�c(q,Q)]�
B
v (q,p,Q)

− [�−�v(q,Q)]�
B
c (q,p,Q) + �B

cv(q,p,Q)}. (4d)

Here the following notation has been used:

�c(q,Q) = Ec(q + αcQ)− αcE �v(q,Q) = −Ev(q − αvQ) + αvE (5a)

�B
c (q,p,Q) =

∫
d2r ei(q−p)·r

{
e

2Mc
(B × r) · Q +

e

2mcc
(B × r) · q +

e2

8mcc2
(B × r)2

}

(5b)
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�B
v (q,p,Q) =

∫
d2r ei(q−p)·r

{
e

2Mc
(B × r) · Q − e

2mvc
(B × r) · q +

e2

8mvc2
(B × r)2

}

(5c)

�B
cv(q,p,Q) =

∫
d2r ei(q−p)·r

{[
e

2Mc
(B × r) · Q

− e

2mvc
(B × r) · q +

e2

8mvc2
(B × r)2

][
e

2Mc
(B × r) · Q

+
e

2mcc
(B × r) · q +

e2

8mcc2
(B × r)2

]}
. (5d)

One of the main peculiarities which distinguishes the BS equation from the Schrödinger
equation is the dependence of the wavefunction (2) on the relative time. In the absence of
a magnetic field the physical source for its appearance is the retardation of the Coulomb
interaction due to the frequency dependence of the inverse dielectric constant. In what
follows we will use the instantaneous approximation for the Coulomb interaction assuming
that ε−1(q, ω) ≈ ε−1

0 . The magnetic field is the second source for the essential relative time
dependence of the BS wavefunction. The physical reason for this can be intuitively understood
as the result of the Lorentz force tending to separate the charges in each exciton.

As in the Wick–Cutkovsky model (Wick 1954), we are looking for a solution of the BS
equation (4a) of the form

�Q(q, ω) = ifQ(q, ω)

[
1

ω −�c(q,Q) + iδ
− 1

ω −�v(q,Q)− iδ

]
(6a)

where fQ(q, ω) is a regular function in the frequency plane with the following property:
fQ(q, �v(Q, q)) = fQ(q, �c(Q, q)). Let us define the function �Q(q), which is the Fourier
transform of the exciton wavefunction of the relative motion �Q(r) = �Q(r, t1 − t2 = 0):

�Q(r) =
∫ +∞

−∞

dω

2π
�Q(q, ω). (6b)

Thus, by taking into account the analytic properties of �Q(q, ω), one can obtain the
following BS equation for determining the exciton energy E = E(Q,B) and the Fourier
transform �Q(q) of the exciton wavefunction:

[
E − Eg − Q2

2M
− p2

2µ

]
�Q(p) +

2πe2

ε0

∫
d2q

(2π)2

1

|p − q|�Q(q) +
∫

d2q

(2π)2
�Q(q)

×
{

[E − Ec(q + αcQ)− Ev(q − αvQ)]�B
c (Q, q,p) + �B

cv(Q, q,p)

E − Ec(q + αcQ)− Ev(p − αvQ) + iδ

× [E − Ec(q + αcQ)− Ev(q − αvQ)]�B
v (Q, q,p) + �B

cv(Q, q,p)

E − Ec(p + αcQ)− Ev(q − αvQ) + iδ

}
= 0.

(7)

In what follows we will use the magnetic length R for the unit length and the exciton
cyclotron energy � for the energy unit. In the coordinate space the exciton wavefunction has
the form

�Q(r) =
∫

d2q

(2π)2
exp[i(q · r)]�Q(q) = exp

[
i
γ

2
Q · r

]

(r − R0). (8a)
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Here R0 = z × Q and the function 
 satisfies the following BS equation:[
−1

2
∇2

r⊥ −
(
R

a0

)
1

|r + R0| − iγ

2
(z × r) · ∇r +

1

8
r2

]

(r)

+ e−i(γ /2)r·Q
∫

d2r1 Veff(r + R0; r1 + R0; Q; εB)ei(γ /2)r1·Q
(r1) = εB
(r)

(8b)

where

Veff(r; r1; Q;E) =
∫

d2p

(2π)2

d2q

(2π)2
d2R exp{i[(r − R) · p − (r1 − R) · q]}

× Veff(p; q; Q; R;E) (9a)

Veff(p; q; Q; R;E) = αcαv

4

{
{[p2 − q2] + 2αc(p − q) · Q + z · (R × (q + αcQ)) + 1

4R2}

× {−z · (R × (q − αvQ)) + 1
4R2}

×
[
E − αv

2
(p + αcQ)

2 − αc

2
(q − αvQ)

2 + iδ

]−1

+ {[p2 − q2] + 2αv(p − q) · Q − z · (R × (q − αvQ)) + 1
4R2}

× {z · (R × (q + αcQ)) + 1
4R2}

×
[
E − αv

2
(q + αcQ)

2 − αc

2
(p − αvQ)

2 + iδ

]−1}
. (9b)

Here γ = (mv − mc)/M , εB = (E − Eg)/� and a0 = ε0/(µe
2) is the exciton Bohr

radius. Equation (8b) is the BS equation for the exciton wavefunction. In comparison to the
Schrödinger equation, the above BS equation contains additionally an effective interaction
Veff , which depends on the exciton energy E(Q,B). As can be seen, the main contribution in
the integrals on the right-hand side of equation (9b) is formed in the region q ≈ p, so we can
use the following expression for the effective interaction Veff :

Veff(r; r1; Q;E) ≈
∫

d2q

(2π)2
exp{i(r − r1) · q}F(q; r; Q;E) (10a)

where

F(q; r; Q;E) = 1

8
(1 − γ 2)

[
r2/4 + 1

2z · (r × Q)
]2 − {z · [r × (q − 1

2γQ)]}2

E − 1
8 (1 − γ 2)Q2 − 1

2q2 + iδ
. (10b)

To obtain the solution of the BS equation (8b), we: (1) restrict our calculations to
the strong-magnetic-field regime, where the LLL approximation takes place; (2) use the
fact that in sufficiently strong magnetic fields the Coulomb interaction can be treated by
perturbation theory. To zero order in the Coulomb interaction, one can use the function

0(r) = (2π)−1/2 exp(−r2/4) as a solution of the BS equation. Thus, for small wavevectors
|Q|R � 1, we obtain the following equation for εB = (E(Q,B)− Eg)/� in zero order in
the Coulomb interaction:

εB = ε
(0)
B (Q) = 1/2 + (1/8)(1 − γ 2)

[
W0(ε

(0)
B ) + W2(ε

(0)
B )Q

2]
where W0(x) and W2(x) are defined as follows:

W0(x) = 11 − 4x − 8(1 − 6x + 2x2)$(−4x) exp(−4x)

W2(x) = 11/2 − x−1 − 2E − 8(1 − 3x + x2)$(−4x) exp(−4x)
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and $(x) denotes the gamma function. The numerical solution of the above equation for small
vectors Q leads to the quadratic magnetoexciton spectrum ε

(0)
B (Q) ≈ 1/2 + % + AQ2, where

% is the energy gap generated by the magnetic field and A is the numerical coefficient. For
electron–heavy-hole excitons in GaAs (mc = 0.067m0 and the Luttinger parameters γ1 = 6.9
and γ2 = 2.4), the calculated values are % = 0.0794 and A = 0.018. The magnetoexciton
spectrum for small vectors Q to first order in the Coulomb interaction is

E(Q,B) = Eg + (1/2 + %)�− Eb + Q2/(2Mexc)

where the effective magnetoexciton mass is Mexc = MBM0/(MB + M0), and M0 = µ/(2A).
For the experiments in homogeneous magnetic fields where the high-field regime is reached,
M0 � MB (for GaAs, M0 = 10MB corresponds to B ≈ 20 T) and the magnetoexciton mass
is equal to MB .

We have assumed a strict 2D case, but it is easy to generalize the calculations to the case
of quantum well excitons. Although not shown, we have performed calculations (Koinov
2001) of the ground state of the exciton in a 4 nm GaAs quantum well sandwiched between
two Ga0.7Al0.3As layers. For electron–heavy-hole excitons (γ1 = 6.9 and γ2 = 2.4) the
calculated ground-state energies in the fields of 20, 18 and 16 T are 1.645, 1.643 and 1.641 eV,
respectively. There is a very good agreement between the calculations and the results of a
photoluminescence study of heavy-hole excitons confined in very thin quantum wells (the
observed peaks are at 1.644, 1.643 and 1.642 eV) reported by Ko et al (1998).
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